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� High memory loads enhance functional connectivity via occipital longitudinal tracts.
� High memory loads reduce functional connectivity via arcuate, uncinate, and superior longitudinal fasciculi.
� Task familiarity increases high-gamma amplitude in the inferior frontal gyrus, and its amplitude predicts successful recall.
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Objective: In tasks involving new visuospatial information, we rely on working memory, supported by a
distributed brain network. We investigated the dynamic interplay between brain regions, including cor-
tical and white matter structures, to understand how neural interactions change with different memory
loads and trials, and their subsequent impact on working memory performance.
Methods: Patients undertook a task of immediate spatial recall during intracranial EEG monitoring. We
charted the dynamics of cortical high-gamma activity and associated functional connectivity modula-
tions in white matter tracts.
Results: Elevated memory loads were linked to enhanced functional connectivity via occipital longitudi-
nal tracts, yet decreased through arcuate, uncinate, and superior-longitudinal fasciculi. As task familiarity
grew, there was increased high-gamma activity in the posterior inferior-frontal gyrus (pIFG) and dimin-
ished functional connectivity across a network encompassing frontal, parietal, and temporal lobes. Early
te; fMRI,
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pIFG high-gamma activity was predictive of successful recall. Including this metric in a logistic regression
model yielded an accuracy of 0.76.
Conclusions: Optimizing visuospatial working memory through practice is tied to early pIFG activation
and decreased dependence on irrelevant neural pathways.
Significance: This study expands our knowledge of human adaptation for visuospatial working memory,
showing the spatiotemporal dynamics of cortical network modulations through white matter tracts.

� 2024 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Visuospatial working memory involves encoding, temporary
maintenance, and retrieval of visual and spatial information
(Baddeley, 1992; Ma et al., 2014) and is essential for everyday cog-
nitive function. Increased familiarity with a given task through
practice improves working memory performance (Crone et al.
2006; Miotto et al., 2006; Schneiders et al., 2011; Kundu et al.,
2013; Constantinidis and Klingberg, 2016; Thompson et al., 2016;
Wang et al., 2019). The utilization of visuospatial working memory
involves a distributed network of brain regions that work together
to encode, maintain, and retrieve information. This network
includes the lower- and higher-order visual areas, medial-
temporal regions, dorsolateral prefrontal cortices, and the poste-
rior inferior-frontal gyrus (pIFG) (Smith and Jonides, 1999;
Constantinidis and Klingberg, 2016; Wu and Buckley, 2022). Con-
verging evidence for the involvement of these brain regions in
visuospatial working memory has been provided by functional
MRI (fMRI) (LaBar et al., 1999; Pochon et al., 2001; Kwon et al.,
2002; Krasnow et al., 2003; Croizé et al., 2004; Suchan et al.,
2006; Ganis et al., 2007; Schmidt et al., 2007; Srimal and Curtis,
2008; Edin et al., 2009; Michels et al., 2010; Christophel and
Haynes, 2014; Vetter et al., 2014; Zumer et al., 2014; Darki and
Klingberg, 2015; Schmidt and Blankenburg, 2018; Yaple et al.,
2019; Henderson et al., 2022), electrophysiology (Croizé et al.,
2004; Vogel and Machizawa, 2004; Sauseng et al., 2005; Agam
and Sekuler, 2007; Axmacher et al., 2008; Michels et al., 2010;
Reinhart et al., 2012; Roux et al., 2012; Lozano-Soldevilla et al.,
2014; Zumer et al., 2014; Johnson et al., 2018a; Sato et al., 2018;
Reinhart and Nguyen, 2019; Goddard et al., 2022; Pavlov and
Kotchoubey, 2022), and lesion-to-deficit studies (Ferreira et al.,
1998; Hillary et al., 2006; Olson et al., 2006; Chase et al., 2008;
Kas et al., 2011; Jeneson et al., 2012; Bowren et al., 2020). The ini-
tial processing of visuospatial information is carried out by lower-
and higher-order visual areas in the occipital and temporal lobes
within 200 ms after stimulus onset (Vogel and Machizawa, 2004;
Agam and Sekuler, 2007; Reinhart and Nguyen, 2019; Peylo
et al., 2022). Investigators have further highlighted the causal role
of the medial temporal lobe in visuospatial working memory
encoding and maintenance, in addition to the formation and retrie-
val of long-termmemory (Olson et al., 2006; Axmacher et al., 2008;
Jeneson et al., 2012; Suthana et al., 2015; Wu and Buckley, 2022).
Meanwhile, the dorsolateral prefrontal cortices and pIFG are sug-
gested to play a critical role in the maintenance and manipulation
of mental representations of visuospatial information (Ferreira
et al., 1998; Hillary et al., 2006, Chase et al., 2008; Johnson et al.,
2017; Davoudi et al., 2021; Parto Dezfouli et al., 2021). fMRI stud-
ies have clarified the spatial extent of functional connectivity mod-
ulations during visuospatial working memory tasks, as defined by
time-specific co-activation (or co-deactivation) in two distinct cor-
tical regions, and the network showing such task-related enhance-
ment of functional connectivity involved extensive regions,
including the prefrontal and visual cortices of each hemisphere
(Toepper et al., 2014; Elton and Gao, 2015; Shine et al., 2015;
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Galeano Weber et al., 2017; O’Connell and Basak, 2018; Di and
Biswal, 2019; Finc et al., 2020; Lugtmeijer et al., 2023). However,
the temporal dynamics of functionally-connected neural networks
underlying visuospatial working memory, along with their sup-
porting white matter tracts, are poorly understood. It is also
unclear how these dynamics adapt as humans become familiarized
with a task across successive trials and how these changes con-
tribute to improvement of working memory performance.

This study aimed to investigate the dynamic pattern of neuronal
activity conveyed through defined white matter tracts that support
visuospatial working memory processes. To achieve this, we uti-
lized a ‘dynamic tractography’ technique that incorporates
intracranial EEG (iEEG) recording and diffusion-weighted imaging
(DWI) tractography (Kitazawa et al., 2023; Ono et al., 2023). As
detailed in the methods section below, for example, we defined
functional connectivity modulation in relation to memory load as
the simultaneous presence of memory load effects on neural activ-
ity within two brain regions and the existence of direct DWI
streamlines connecting them. To quantify memory load- and task
familiarity-dependent effects on neural activity, we measured
event-related high-gamma amplitude at 70–110 Hz, a surrogate
marker of neural activation with excellent signal fidelity and tem-
poral resolution (Crone et al., 2006; Nir et al., 2007; Ball et al.,
2009; Burke et al., 2014; Buzsáki and Schomburg, 2015; Rich
et al., 2017; Sonoda et al., 2022). Event-related high-gamma aug-
mentation is tightly correlated with increased firing rate on single
neuron recordings (Mukamel et al., 2005; Ray et al., 2008; Rich and
Wallis, 2017; Leszczyński et al., 2020), increased hemodynamic
activation on fMRI (Nir et al., 2007; Harvey et al., 2013; Kunii
et al., 2013; Hill et al., 2021), and increased glucose metabolism
on positron emission tomography (PET) (Nishida et al., 2008),
and correlates with behavioral changes induced by direct cortical
stimulation (Arya et al., 2018). We previously found that event-
related high-gamma amplitude modulation was a better predictor
of cognitive outcomes after cortical resection than event-related
amplitude modulation of low-frequency bands (Sonoda et al.,
2022). In the present study, we created animations illustrating
when and where cortical high-gamma activity and functional con-
nectivity through white matter tracts were modulated under vary-
ing levels of memory load and task familiarity. We tested the
following hypotheses. First, we expected that brain regions sup-
porting memory encoding and maintenance would exhibit high-
gamma amplitude enhancement as memory load increased: specif-
ically the visual cortex, medial temporal region, dorsolateral pre-
frontal cortices, and pIFG (Olson et al., 2006; Agam and Sekuler,
2007; Jeneson et al., 2012; Reinhart and Nguyen, 2019; Peylo
et al., 2022; Wu and Buckley, 2022). Second, we predicted that
specific brain regions, such as the dorsolateral prefrontal cortices
or pIFG, would exhibit high-gamma enhancement as task familiar-
ity increased from trial to trial (Ferreira et al., 1998; Hillary et al.,
2006; Chase et al., 2008). We conducted a trial-by-trial analysis
and examined whether the high-gamma amplitudes in the regions
showing task familiarity-dependent enhancement were predictive
of successful recall.
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Why is there a need to employ intracranial EEG for evaluating
the neural dynamics during visuospatial working memory tasks?
Artifacts from the temporal and ocular muscles pose challenges
to the quantitative measurement of event-related high-gamma
activity via scalp EEG and magnetoencephalography (MEG). As
such, many of the prior non-invasive studies on visuospatial work-
ing memory have largely reported on modulations of low-
frequency band cortical signals instead. For example, noninvasive
electrophysiology studies report augmentation of alpha and beta
amplitudes during working memory tasks (Sauseng et al., 2005;
Mazaheri and Jensen, 2008; van Dijk et al., 2010; Reinhart et al.,
2012), while others report alpha and beta attenuation (Proskovec
et al., 2018). It has been hypothesized that augmentation of
event-related alpha/beta amplitudes during working memory
tasks is indicative of disengagement of underlying cortical modules
(Hanslmayr et al., 2016; Johnson et al., 2020; Yin et al., 2020). A
tight inverse correlation has been reported between high-gamma
and low-frequency band amplitudes in the primary sensory and
motor cortices during spontaneous body movements (Crone
et al., 2006; Ono et al., 2023). To enhance our understanding of
working memory task-related modulations of low-frequency band
activity, we explored the correlation between task-related ampli-
tude modulations of high-gamma and low-frequency bands in each
region of interest (ROI). We examined the possibility of an inverse
relationship, in which the attenuation of high-gamma amplitudes
would be associated with the augmentation of low-frequency band
amplitudes at a given moment, and vice versa. We expected that
the current study might offer insights into the potential mecha-
nisms underlying modulations of low-frequency band activities
during working memory tasks.
2. Methods

2.1. Participants

The present study included 10 participants (Table 1) whomet the
following eligibility criteria. The inclusion criteria were: (i) patients
with focal epilepsy who underwent extraoperative iEEG recording
as part of the clinical management of drug-resistant seizures at Chil-
dren’s Hospital of Michigan between September 2017 and Septem-
ber 2021; (ii) able to complete five sessions of Memory Matrix - a
visuospatial working memory game on the Lumosity platform
(https://www.lumosity.com/; Lumos Labs, Inc, San Francisco, CA) -
during interictal iEEG recording. Participants were excluded if they
had: (i) massive brain malformations that deformed the central, lat-
eral, or calcarine sulcus (Kitazawa et al., 2023); (ii) a history of previ-
ous resective epilepsy surgery; (iii) hemiparesis; (iv) visual field
deficit on confrontation; or (v) hearing deficit.

All 10 participants were right-handed, and none exhibited a
congenital, left-hemispheric neocortical MRI lesion associated with
Table 1
Patient demographics. CLB: Clobazam. LAC: Lacosamide. LEV: Levetiracetam. LTG: Lamo
Frontal. O: Occipital. P: Parietal. T: Temporal. NA: Not available because seizure events di

Patient
number

Age
(years)

Sex Sampled
hemisphere

Number of analyzed
electrodes

1 17 Male Left 86
2 11 Male Left 74
3 16 Male Left 89
4 20 Male Right 105
5 13 Male Left 64
6 9 Male Left 64
7 16 Female Right 114
8 14 Female Right 79
9 15 Female Right 106
10 19 Female Left & Right 95

11
left-handedness. Therefore, it was suggested that all patients had
essential language areas located in the left hemisphere
(Rasmussen and Milner, 1977; Akanuma et al., 2003; Möddel
et al., 2009). We had a comprehensive discussion on the justifica-
tion and reliability of estimating the language-dominant hemi-
sphere through anatomical imaging and handedness (Sonoda
et al., 2022). Indeed, electrical stimulation mapping identified
left-hemispheric language sites in all six patients who underwent
intracranial electrode sampling mainly from the left hemisphere
(i.e., patients 1, 2, 3, 5, 6 and 10). No such sites were detected in
the right hemisphere of any patient.

2.2. Intracranial EEG and MRI data acquisition

The data acquisition framework for iEEG and MRI data was the
same as previously reported (Nakai et al., 2017; Johnson et al.,
2018b; 2022; Yin et al., 2020; Mitsuhashi et al., 2022). Platinum
disk electrodes with a 10 mm center-to-center distance were sur-
gically placed on the pial surface of the brain (Fig. 1). The number
and configuration of intracranial electrodes were based purely on
clinical needs to localize the boundary between the epileptogenic
zone and eloquent areas, and no extra electrodes were implanted
for research purposes. Bedside iEEG recording in the Epilepsy Mon-
itoring Unit was performed using a Nihon Kohden Neurofax 1100A
Digital System (Nihon Kohden America Inc, Foothill Ranch, CA,
USA) with a sampling rate of 1000 Hz and an amplifier bandpass
filter of 0.016–300 Hz. The exact timing of stimulus onset and off-
set, as well as participants’ tap responses, were integrated into the
iEEG acquisition system via the DC input (Mitsuhashi et al., 2022).
A total of 876 electrode sites were utilized for subsequent iEEG
analysis, after excluding those located in the seizure onset zone
(Asano et al., 2009), spiking zone (Kural et al., 2020), or structural
lesions, along with those affected by artifacts.

Before intracranial electrode placement, we acquired 3-tesla
MRI scans, which included T1-weighted spoiled gradient-recalled
echo and fluid-attenuated inversion recovery sequences (Nakai
et al., 2017). We used FieldTrip (https://www.fieldtriptoolbox.
org) to create a 3D MRI surface image, where electrode locations
were defined directly on the brain surface using post-implant CT
images (Stolk et al., 2018). We next used FreeSurfer (https://sur-
fer.nmr.mgh.harvard.edu) to normalize each electrode site to an
MNI-standard brain coordinate for group-level visualization and
analysis. We then divided the cerebral cortex of each hemisphere
into 21 ROIs based on the Desikan parcellation (Desikan et al.,
2006) and included 16 ROIs that contained at least 20 electrode
sites in our group-level statistical analyses (Fig. 1).

2.3. Visuospatial working memory task

Patients completed the Memory Matrix in a quiet room, during
their interictal state and at least two hours apart from habitual sei-
trigine. OXC: Oxcarbazepine. TPM: Topiramate. VPA: Valproate. ZNS: Zonisamide, F:
d not occur during the iEEG recording.

Antiepileptic
drugs

Age of epilepsyonset
(years)

Seizure onset
zone

MRI finding

OXC, LEV 15 T Nonlesional
OXC 6 T Tumor
LEV 9 T Tumor
VPA, OXC 6 F Nonlesional
OXC, CLB, LAC 8 T Heterotopia
OXC 9 T Tumor
CLB, TPM 12 NA Nonlesional
LAC, LTG 5 Insula Tumor
LTG, ZNS 6 P Nonlesional
OXC 4 F Nonlesional

https://www.lumosity.com/
https://www.fieldtriptoolbox.org
https://www.fieldtriptoolbox.org
https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu


Fig. 1. Distribution of subdural electrode sites across regions of interest (ROIs). (A)The pooled distribution of electrode sites from 10 patients. (B) ROI locations. PreCG:
precentral gyrus. PoCG: postcentral gyrus. STG: superior-temporal gyrus. aMFG and pMFG: anterior and posterior middle-frontal gyri. SMG: supramarginal gyrus. SFG:
superior-frontal gyrus. FG: fusiform gyrus. pIFG: posterior inferior-frontal gyrus (summation of pars opercularis and pars triangularis). MedTG: medial temporal gyrus
(summation of entorhinal and parahippocampal gyri). MTG: middle-temporal gyrus. LOG: lateral occipital gyrus. IPL: inferior parietal lobule. ITG: inferior-temporal gyrus.
OrbF: orbitofrontal gyrus (summation of pars orbitalis and medial and lateral orbitofrontal gyri). MOG: medial occipital gyrus (summation of cuneus and lingual gyri). SPL:
superior parietal lobule. A total of 16 regions of interest mentioned above were included in the group-level ROI analysis as they contained at least 20 electrode sites. In turn,
the ROI analysis excluded the following regions that were sampled by fewer than 20 electrode sites. aCG: anterior cingulate gyrus. PCun: precuneus gyrus. pCG: posterior
cingulate gyrus. PCL: paracentral lobule. FP: frontal pole. Supplementary Table 1 presents the precise count of electrode sites in the respective ROIs.
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zure events (Fig. 2; Supplementary Video 1). None of the patients
had played this working memory game before, and all patients
were given a brief tutorial to understand the rules prior to the first
session. Patients were comfortably positioned on bed, and used an
iPad (screen display width: 14.7 cm; length: 19.6 cm; Apple Inc.,
Cupertino, CA) to play five consecutive sessions, each comprising
12 trials. During a given trial, a tile grid with n blue-painted tiles
was displayed on the iPad screen for two seconds. Patients were
required to remember the locations of the blue tiles, and following
their disappearance, tap on the locations where they were previ-
ously presented, using their right finger. After the n-th tap
response, the screen was refreshed, and another trial began. The
game was designed such that the number of presented blue tiles
was adjusted based on the accuracy of preceding trials. Memory
load increased by one tile after a successful trial, and decreased
by one tile after a failed trial. The first trial consisted of 3 blue tiles
and maximum number of tiles in a single trial was 13 in the pre-
sent study. A trial was considered a ’success’ when all tile locations
were accurately tapped and as ’failure’ otherwise. The response
time for a given trial was defined as the period between stimulus
offset and onset of the initial tap response.

2.4. Time-frequency analysis of high-gamma activity in iEEG

We employed time–frequency iEEG analysis on common aver-
age reference, as previously reported (Nakai et al., 2019;
Mitsuhashi et al., 2022; Kitazawa et al., 2023; Ono et al., 2023).
The complex demodulation method incorporated in the BESA
EEG Analysis Package (BESA GmbH, Gräfelfing, Germany;
Hoechstetter et al., 2004; Papp and Ktonas, 1977) transformed
12
iEEG signals into 10-ms/5-Hz time–frequency bins for assessment
of high-gamma amplitude70-110 Hz during the following periods: [1]
the 3,000-ms time window between the stimulus onset and
1,000 ms after the stimulus offset; and [2] the 2,000-ms time win-
dow 1500-ms before and 500-ms after the initial tap response. The
complex modulation was done by multiplying the time-domain
iEEG signal with a complex exponential, followed by a band-pass
filter. Because it employed a Gaussian-shaped low-pass finite
impulse response filter, this complex demodulation method is
equivalent to a Gabor transformation. The time–frequency resolu-
tion for high-gammameasurement was ± 15.8 ms and ± 7.1 Hz (de-
fined as the 50% power drop of the finite impulse response filter).

To visualize the spatiotemporal dynamics of high-gamma mod-
ulations, we calculated the percent change in high-gamma ampli-
tude for each electrode site (where amplitude is a measure
proportional to the square root of power), in comparison to a base-
line mean. To establish baseline, we selected 60 non-overlapping
2,000-ms time windows during periods of spontaneous, resting,
eye-open wakefulness immediately preceding the game sessions.
We then visualized the percentage change in high-gamma ampli-
tude on a FreeSurfer standard pial surface image, applying interpo-
lation within 10 mm from the electrode center (Sakakura et al.
2022; Supplementary Video 2).

To assess the correlation between task-related amplitude mod-
ulations of high-gamma and other frequency bands, at a given
moment, we analyzed the iEEG signals using the non-overlapping
time–frequency bins designed to provide optimal frequency reso-
lution for lower-frequency bands. To quantify the amplitude of
delta (2–4 Hz) activity, the complex demodulation method
transformed iEEG signals into 50-ms/1-Hz time–frequency bins,



Fig. 2. Memory Matrix: a visuospatial working memory game. Each trial involved
remembering the locations of blue-painted tiles visible for two seconds. After the
blue tiles disappeared, patients tapped on the remembered locations. A feedback
sign and sound were given immediately following each tap to indicate if the
response was correct. After the n-th tap (in this case, n = 3), the screen was
refreshed and the next trial began. The stimulus period was defined as the two-
second period between stimulus onset and offset, while the response period was
defined as the time between stimulus offset and the n-th tap. Supplementary
Video 1 demonstrates how to play this iPad-based memory game. As the number of
blue-painted tiles increased, the matrix size (row � column) increased as follows: 3
tiles: 3 � 3; 4 tiles: 3 � 4; 5 tiles: 4 � 4; 6 tiles: 4 � 5; 7 tiles: 5 � 5; 8–9 tiles: 5 � 6;
10–13 tiles: 6 � 6.
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providing a time–frequency resolution of ± 79 ms and ± 1.4 Hz for
this band. To quantify the amplitude of theta (4–8 Hz), alpha (8–
12 Hz), sigma (12–16 Hz), beta (16–30 Hz), low-gamma (30–
50 Hz), high-gamma (70–110 Hz), and very high-gamma (130–
150 Hz) frequencies, we used 25-ms/2-Hz time–frequency bins.
This provided a time–frequency resolution of ± 39.4 ms and ± 2.8
Hz for these bands.

2.5. Statistical assessment of factors associated with task-related high-
gamma modulations

We employed a mixed model analysis to investigate whether
increased memory loads or task familiarity altered the spatiotem-
poral characteristics of high-gamma amplitude modulations dur-
ing a visuospatial working memory task. We tested the
prediction that high-gamma amplitude increases as a function of
memory load in region including the visual cortex, medial tempo-
ral region, dorsolateral prefrontal cortices, and pIFG. In turn. Fur-
thermore, we tested the prediction that task familiarity would be
associated with high-gamma increases in dorsolateral prefrontal
cortices and pIFG.

The dependent variable was the high-gamma amplitude at each
electrode site (% change compared to the baseline mean), at a
specific ROI, during a given 250-ms window slide, moving every
50 ms through the 2,500-ms analysis period between stimulus
onset and 500 ms after stimulus offset, in each trial. The fixed
13
effect predictor variables included [a] ’number of blue tiles’ (rang-
ing from 3 to 13) treated to represent the working memory load in
a given trial, and [b] ’trial number’ (ranging from 1 to 60), repre-
senting the degree of task familiarity. We controlled potential con-
founding effects on high-gamma amplitude measures by
incorporating the following fixed effect variables: [c] ’patient age’
(in years), [d] ’sampled hemisphere’ (with a value of 1 indicating
the left hemisphere), [e] ’individual recall performance’ (defined
as the median number of blue tiles among successful trials; rang-
ing from 6 to 9), and [f] ’immediately prior failure’ (with a value
of 1 indicating a failure in the immediately preceding trial). The
rationale for incorporating ’patient age’ into the mixed model anal-
ysis was to account for the anticipated development and improve-
ment of visuospatial working memory skills during childhood and
adolescence, as noted by prior research (Vuontela et al., 2003).
Given our small sample size of ten, this analysis was not intended
to definitively identify a statistically significant developmental
variability (Johnson et al., 2022; Johnson and Knight, 2023). The
effect of ’sampled hemisphere’ was considered because visuospa-
tial processing tends to be right-hemispheric dominant (Pisella
et al., 2011; Mankin et al., 2021), and all participants were right-
handed and responded with their right fingers, in the present
study. We also considered the effect of ’individual recall perfor-
mance’ since patients with higher working memory performance
would require a larger number of blue tiles to pose a measurable
increase in memory load. In addition, we considered the impact
of a failure in the immediately preceding trial because this adap-
tive working memory task was designed to pose a memory load
of ‘m’ immediately following a successful trial with a load of ‘m-
10 or immediately following a failed trial with a load of ‘m + 10.
We likewise considered the possibility that patients may become
more cautious in the trial immediately after a failure (Mitsuhashi
et al., 2022). Patient and intercept were treated as random factor
variables. We employed a false discovery rate (FDR) correction
for repeated modeling of 16 ROIs across 46 sliding time windows,
and the threshold for statistical significance was set at a two-sided
FDR-corrected p-value less than 0.05.

2.6. Definition and visualization of memory load-related and task
familiarity-related modulations of functional connectivity

To visualize the spatiotemporal characteristics of memory load-
related functional connectivity modulations via white matter
tracts, we created a dynamic tractography animations using a
method similar to those reported previously (Supplementary
Video 3; Kitazawa et al., 2023; Ono et al., 2023). The mixed model
analysis, performed in the previous section, determined the time
windows in which the memory load showed a significant positive
(or negative) effect on high-gamma amplitude, at given pairs of
cortical ROIs (Fig. 1B). We thereby declared the ‘functional connec-
tivity’ between white matter-connected ROIs to be enhanced (or
diminished), as a function of the memory load if: [i] both ROIs
showed significant and simultaneous memory load effects on the
mixed model analysis and [ii] they were connected by direct
DWI streamlines. Thereby, we defined the onset latency of high-
gamma functional connectivity based on the timing of significant
co-modulations via white matter tracts.

To delineate anatomical white matter streamlines, we utilized
open-source DWI data collected from 1,065 healthy participants
as part of the Human Connectome Project (Yeh et al., 2018;
https://brain.labsolver.org/diffusion-mri-templates/hcp-842-hcp-
1021); a method previously reported in our work (Mitsuhashi et al.,
2021; Sonoda et al., 2021; Mitsuhashi et al., 2022; Kitazawa et al.,
2023; Ono et al., 2023; Sakakura et al., 2023). To identifywhitemat-
ter tracts underlying functional connectivity modulations, we
placed seeds at cortical ROIs revealing significant and simultaneous
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positive (or negative) memory load effects on high-gamma ampli-
tude, as determined by the mixed model analysis. The DSI Studio
script (https://dsi-studio.labsolver.org/) visualized tractography
streamlines directly connecting these cortical ROIs within theMon-
treal Neurological Institute standard space. The fiber tracking
parameters used were a quantitative anisotropy threshold of 0.05,
a maximum turning angle of 70� and a streamline length of 20 to
250 mm. We excluded streamlines involving the brainstem, basal
ganglia, thalamus, or cerebrospinal fluid space from the tractogra-
phy analysis. The resulting dynamic tractography videos - sliding
every 50 ms during the 2,500-ms analysis period between stimulus
onset and 500 ms after stimulus offset - visualized the spatiotem-
poral dynamics of white matter streamlines linking functionally
connected sites with significant memory load effects on high-
gamma amplitude (Supplementary Video 3). In the present study,
we visualized memory load effects on high-gamma amplitudes in
one hemisphere; using mixed model analysis, we clarified whether
the sampled hemisphere had a significant effect on high-gamma
amplitudes at given ROIs and time windows.

We likewise generated another dynamic tractography video
animating the spatiotemporal characteristics of task familiarity-
related functional connectivity modulations via white matter
tracts (Supplementary Video 4). We considered the functional
connectivity through given white matter tracts to be enhanced
(or diminished), as a function of task familiarity, if a given ROI pair
showed a significant and simultaneous effect of ’trial number’ on
high-gamma amplitude in the mixed model analysis and if they
were connected by direct DWI streamlines.

2.7. Per-trial statistical assessment of the relationship between high-
gamma modulations and response accuracy

Using a logistic mixed model analysis, we aimed to investigate
whether high-gamma modulations, at a given ROI in a given trial,
would be associatedwith improved recall performance. This analysis
tested the hypothesis that enhanced high-gamma amplitudes at dor-
solateral prefrontal or pIFG ROIs would be associated with improved
response accuracy. The dependent variable was ’response accuracy’
(with a value of 1 indicating the correct response) in a given trial.
The fixed effect predictor variables included [a] ’number of blue tiles’
(reflectingmemory load) in a given trial, [b] ’trial number’ (reflecting
task familiarity), [c] ’patient age’, [d] ’sampled hemisphere’, [e] ’indi-
vidual recall performance’, [f] ’failure in an immediately prior trial’,
and [g] ’mean high-gamma’ (percent change during a given non-
overlapping 250-ms time window at the ROI). Patient and intercept
were treated as random factor variables. We employed an FDR cor-
rection for repeated modeling for ROIs across the 2,500 ms analysis
period between stimulus onset and 500 ms after stimulus offset,
and the threshold for statistical significance was set at a two-sided
FDR-corrected p-value less than 0.05.

2.8. Statistical assessment of the additive value of high-gamma
amplitude in predicting upcoming responses

It is plausible to expect that trials with lower memory loads
would be associated with a higher chance of successful recall.
We assessed the extent to which addition of an early high-
gamma measure during the stimulus period could enhance the
accuracy of a prediction model that solely incorporates memory
load. To do so, we employed a method analogous to those previ-
ously reported (Kuroda et al., 2021; Sonoda et al., 2022).

First, we utilized a machine learning-based analysis to explore
which of the high-gamma measures among 16 ROIs and four 250-
ms time windows during the first 1,000 ms period after stimulus
onset served as the most effective classifier for predicting a patient’s
response. We employed the ensemble learning algorithm provided
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by the Statistics and Machine Learning Toolbox in MATLAB R2022b
(https://www.mathworks.com/help/stats/ensemble-algorithms.
html). We generated the bagged tree ensemble model based on
’number of blue tiles’, ’trial number’, ’patient age’, ’individual recall
performance’, ’immediately prior failure’, and ’mean high-gamma’,
in a given non-overlapping 250-ms time window at each of the 16
ROIs. Using the MATLAB ’predictorImportance’ function (https://
www.mathworks.com/help/stats/compactregressionensemble.pre-
dictorimportance.html; AlSkaif et al., 2020), we computed the rela-
tive importance of each variable in predicting a successful trial 100
times, and the one-sample t-test subsequently determined which
variable had the highest mean relative importance in this machine
learning-based classification of successful trials. It should be noted
that, in the bagged tree ensemble model analysis, we utilized a
five-fold cross-validation procedure whereby the 60-trial data was
randomly partitioned into five sets. The algorithm was trained on
four of these sets, representing 80% of the trials, while the remaining
set (20% of the trials) was used for testing the model’s performance.
We hypothesized that high-gamma augmentation in the dorsolateral
prefrontal cortex or pIFG would emerge as the most significant con-
tributing factor in predicting the accuracy of forthcoming responses.

Next, we determined the utility of task-related high-gamma
amplitude in predicting forthcoming response accuracy. To this
end, we employed logistic regression analysis at each electrode site
to quantify the impact of incorporating high-gamma amplitude on
the model’s accuracy in predicting a patient’s upcoming response.
We initially assessed the prediction accuracy of ’the base logistic
regression model’ solely incorporating the number of blue tiles
(i.e., memory load in a given trial). We then assessed the prediction
accuracy of ’the full logistic regression model’, which also incorpo-
rated the mean high-gamma amplitude (% change) during a 250-
ms time window at the specific ROI identified by the machine
learning algorithm as the most important contributing variable.
We assessed the prediction accuracy of each logistic regression
model using area under the receiver operating characteristics
curve. We employed a leave-one trial-out cross-validation proce-
dure to reduce the risk of overfitting to the training data. We per-
formed the statistical analyses using IBM SPSS Statistics 25
software (IBM Corp., Chicago, IL, USA). A two-sided p-value
of < 0.05 was considered statistically significant.

2.9. Statistical assessment of the relationship between high-gamma
and other frequency band amplitudes

In each ROI, we investigated whether the attenuation of high-
gamma amplitudes was associated with an increase in low-
frequency band amplitudes at any given moment, and vice versa.
To this end, we computed the Spearman’s rho at each electrode
site, reflecting the correlation between the amplitudes of high-
gamma and each of the lower frequency bands (i.e., theta, alpha,
sigma, beta, low-gamma, and very high-gamma) across 120 non-
overlapping time bins within a 3,000-ms period spanning from
stimulus onset to 1,000 ms after stimulus offset. The Spearman’s
rho was likewise computed between high-gamma and delta ampli-
tudes across 60 non-overlapping time bins within the same period.
We then used studentized bootstrap statistics, with 1,000 resam-
ples, to test if the mean Spearman’s rho significantly differed from
zero at each ROI. A negative Spearman’s rho would imply an
inverse correlation between high-gamma and given frequency
band amplitudes, at a given ROI. A two-sided p-value of < 0.05
was considered statistically significant.

2.10. Ethics statement

The Institutional Review Board at Wayne State University
approved this study. We obtained written informed consent from
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patients 18 years or older or the legal guardians of patients
younger than 18. We also obtained written assent from pediatric
patients aged 13 years or older.

2.11. Data availability

The iEEG data is available at https://openneuro.org/ (https://doi.
org/10.18112/openneuro.ds004770.v1.0.0).

2.12. Code availability

The analysis codes are available at https://github.com/kaz1126/
MI_HFO.
3. Results

3.1. Behavioral observations

All patients confirmed that the session was their first time using
the assigned memory task game. All patients completed 60 trials,
and the individual recall performance (defined as the median num-
ber of blue tiles among all successful trials) ranged from 6 to 9. The
maximum number of blue tiles (i.e., maximum memory load) in
successful trials ranged from 8 to 12 across patients, while in failed
trials it ranged from 9 to 13. The mean response time was 1,169 ms
(range: 814 to 2,081 ms), and the mean correct response rate was
52.3% (range: 46.7% to 58.3%). Immediately after a successful trial,
the mean response time was 1,234 ms (range across patients: 883
to 2,130 ms), and it was 1,229 ms (range: 789 to 2081 ms) imme-
diately after a failed trial.

The behavioral data did not show evidence of excessive multi-
collinearity across ’memory load (i.e., tile number)’, ’task familiar-
ity (i.e., trial number)’, and ’failed response in an immediately prior
trial’. Regression analyses indicated that the average correlation
coefficient across the 10 patients, with the standard deviation in
parentheses, was 0.262 (0.205) between ’memory load’ and ’task
familiarity’; 0.103 (0.085) between ’memory load’ and ’failed
response in an immediately prior trial’; and 0.129 (0.063) between
’task familiarity’ and ’failed response in an immediately prior trial’.

The mixed model analysis, incorporating ‘memory load’, ‘task
familiarity’, ‘patient age’, ‘individual recall performance’ and ‘failed
response in an immediately prior trial’ as fixed effect predictors
while ‘patient’ and ‘intercept’ as random factors, demonstrated that
increased memory load was associated with increased response
times (t-value: 2.70; mixed model coefficient: 49 ms/tile; 95% confi-
dence interval [95%CI]: 13 to 85; p-value: 0.007; degrees of freedom
[DF]: 579.28). In addition, increased task familiarity was associated
with reduced response times (t-value: �2.29; mixed model coeffi-
cient: �4 ms/trial; 95%CI: �7 to � 1; p-value: 0.022; DF: 577.10).
Patients with greater individual recall performance also demon-
strated reduced response times (t-value:�3.80; mixed model coeffi-
cient:�310ms/tile; 95%CI:�500 to� 120; p-value: 0.006; DF: 7.56).
Alternatively, the mixed model analysis failed to find a significant
effect of ‘patient age’ (t-value: �1.45, mixed model coefficient:
�38 ms; 95%CI: �99 to 24; p-value: 0.190; DF: 7.00) or ‘failed
response in an immediately prior trial’ (t-value:�0.17; mixedmodel
coefficient:�10ms; 95%CI:�119 to 100; p-value: 0.862; DF: 577.2).

3.2. Memory load-dependent high-gamma amplitude modulations

Findings from the mixed model analysis are presented in Fig. 3
and described below.With increasedmemory load, there was a sig-
nificant increase in high-gamma amplitude in several brain regions
at different time points after stimulus onset. The medial occipital
region showed a sustained memory load-dependent increase in
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high-gamma amplitude right after stimulus onset (maximum t-
value: +3.36 at the 250-ms period between + 350 to + 600 ms
post-stimulus onset; mixed model coefficient: +1.78%/tile; 95%CI:
+0.74 to + 2.82; uncorrected p-value: 0.001; DF: 1701.98), followed
by the medial temporal region (maximum t-value: +2.90
between + 550 to + 800 ms post-stimulus onset; mixed model coef-
ficient: +1.75%/tile; 95%CI: +0.57 to + 2.94; uncorrected p-value:
0.004; DF: 1701.12), fusiform area (maximum t-value: +2.61
between + 550 to + 800 ms post-stimulus onset; mixed model coef-
ficient: +1.03%/tile; 95%CI: +0.25 to + 1.80; uncorrected p-value:
0.009; DF: 3588.55), and lateral occipital regions (maximum t-
value: +2.11 between + 550 to + 800ms post-stimulus onset; mixed
model coefficient: +1.05%/tile; 95%CI: +0.07 to + 2.03; uncorrected
p-value: 0.035; DF: 2173.84).

In contrast, with increased memory load there was significant
reduction of high-gamma amplitude in several brain regions
including the superior-temporal gyrus (STG), precentral gyrus,
anterior middle frontal gyrus (aMFG), posterior middle frontal
gyrus (pMFG), orbitofrontal gyrus, pIFG, superior-frontal gyrus
(SFG), and supramarginal gyrus (largest negative t-value noted at
STG: �7.77 between + 100 to + 350 ms post-stimulus onset; mixed
model coefficient: �1.98%/tile [95%CI: �2.47 to � 1.48]; uncor-
rected p-value: 9.96E-15; DF: 4708.37; Fig. 3).

3.3. Memory load-dependent functional connectivity modulations

As best demonstrated in the dynamic tractography video (Fig. 3C;
Supplementary Video 3), with increasedmemory load, therewas an
increase in the functional connectivity through the medial occipital
longitudinal tract (Beyh et al., 2022) connecting the medial occipital
andmedial temporal regions between 350 and 800ms post-stimulus

onset. Similar effects were observed for the inferior longitudinal and
vertical occipital fasciculi connecting the medial occipital, lateral
occipital, fusiform, and medial temporal regions between 550 and

950 ms post-stimulus onset. Similar effects were also observed for
the inferior fronto-occipital fasciculus connecting the medial occipi-

tal and pIFG between � 100 and 200 ms post-stimulus offset. Mixed
model analysis revealed that 49 time bins showed significant posi-
tive memory load effects on high-gamma amplitudes. Considering
the presence of 120 distinct pairs of analysis ROIs in the present
study, therewas approximately 41.3%, 0.2%, and 0.001% chance prob-
ability of a pair of ROIs showing significant positive memory load
effects simultaneously for at least one, two, or three consecutive time
windows, respectively. Here, the chance probability of simultaneous
occurrence of significant positive memory load effects at least at a
pair of ROIs for consecutive x timewindowswas based on the follow-
ing equation: 1 – (1 – ((49/736)2)x)120.

With increased memory load, there was a decrease in the func-
tional connectivity in several white matter tracts including the
arcuate, uncinate, and superior-longitudinal fasciculi connecting
the temporal, frontal, and parietal lobes between the stimulus onset
and 500 ms post-stimulus offset (Fig. 3C; Supplementary Video 3).
Mixed model analysis revealed that 195 time windows (or 26.5%)
showed significant negative memory load effects on high-gamma
amplitudes. Thus, there was approximately 45.4%, 4.2%, and 0.3%
chance probability of a pair of ROIs showing significant negative
memory load effects simultaneously for at least two consecutive,
three consecutive, and four consecutive time windows.

3.4. Task familiarity-dependent high-gamma amplitude modulations

Themixedmodel analysis showed that, with increased trial num-
ber, there was a significant increase in high-gamma amplitude in the
pIFG between + 400 ms and + 900 ms post-stimulus onset (maxi-
mum t-value: +3.77 noted at a 250-ms period between + 800
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Fig. 3. Memory load-dependent high-gamma amplitude modulations and white matter substrates. (A) Spatiotemporal characteristics of the relationship between memory
load and high-gamma amplitude. The red cells indicate mixed model t-values at regions of interest (ROIs) and corresponding 250-ms time windows (sliding every 50 ms)
where increased memory loads were significantly associated with higher high-gamma amplitudes (i.e., FDR-corrected p-value < 0.05). The blue cells indicate spatiotemporal
locations where increased memory loads were significantly associated with decreased high-gamma amplitudes. (B) Snapshots of memory load-dependent high-gamma
modulations on the cortical surface. Color-coded ROIs indicate that increased memory loads were significantly associated with increased (red) or decreased (blue) high-
gamma amplitudes. (C) Snapshots of white matter tracts underlying memory load-dependent functional connectivity modulations. Color-coded streamlines indicate
functional connectivity enhancement (red) and diminution (blue) between ROIs. 0 ms: a 250-ms time window immediately after stimulus onset. Please refer to Fig. 1 for the
meaning of each abbreviation.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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to + 1050ms post-stimulus onset; mixedmodel coefficient: +0.16%/-
trial; 95%CI: +0.08 to + 0.24; uncorrected p-value: 1.701E-04; DF:
1878.00) and in the SFG between + 800 to + 1150 ms post-
stimulus onset (maximum t-value: +2.47 noted between + 750
to + 1000ms post-stimulus onset; mixedmodel coefficient: +0.06%/-
trial; 95%CI: +0.01 to + 0.11; uncorrected p-value: 0.014; DF:
2998.88) (Fig. 4).

The mixed model analysis suggested that increased trial num-
ber correlated with persistent reduction of high-gamma amplitude
in many brain regions including the frontal, temporal, and parietal
lobes (Fig. 4). The largest negative t-value was � 7.34, noted in the
precentral gyrus between + 350 to + 600 ms post-stimulus onset
(mixed model coefficient: �0.15%/trial; 95%CI: �0.19 to � 0.11;
uncorrected p-value:2.536E-13; DF: 5710.02).

3.5. Task familiarity-dependent functional connectivity modulations

Functional connectivity through the frontal aslant fasciculus
between the pIFG and SFG was enhanced as a function of trial
16
number, between 700 and 1000 ms post-stimulus onset (Fig. 4C;
Supplementary Video 4). Of the 736 time windows, 12 (or 1.6%)
showed significant positive task familiarity effects on high-
gamma amplitudes in mixed model analysis. Thus, there was
approximately 3.1% and 0.0008% chance probability of a pair of
ROIs showing significant positive effects of task familiarity on
high-gamma amplitudes simultaneously for at least one and two
consecutive time windows, respectively.

Task familiarity-dependent functional connectivity diminution
involved the arcuate, uncinate, superior-longitudinal, inferior-
longitudinal, and inferior fronto-occipital fasciculi between the
temporal, frontal, parietal, and occipital lobes between the stimu-
lus onset and 500 ms post-stimulus offset (Fig. 4C; Supplementary
Video 4). Of the 736 time windows, 401 (or 54.5%) showed signif-
icant negative effects of task familiarity in the aforementioned
mixed model analysis. Thus, there was approximately 24.2%,
7.9%, 2.4% chance probability of two ROIs showing significant neg-
ative effects simultaneously for at least five, six, and seven consec-
utive time windows, respectively.



Fig. 4. Task familiarity-dependent high-gamma amplitude modulations and white matter substrates. (A) Spatiotemporal characteristics of the relationship between task
familiarity and high-gamma amplitude. The red cells indicate mixed model t-values at regions of interest (ROIs) and corresponding 250-ms time windows where increased
trial numbers were significantly associated with increased high-gamma amplitudes. The blue cells indicate time windows where increased trial numbers were significantly
associated with decreased high-gamma amplitudes. (B) Snapshots of task familiarity-dependent high-gamma modulations. Color-coded ROIs indicate that increased trial
numbers were significantly associated with increased (red) or decreased (blue) high-gamma amplitudes. (C) Snapshots of white matter tracts underlying task familiarity-
dependent functional connectivity modulations. Color-coded streamlines indicate functional connectivity enhancement (red) and diminution (blue) between ROIs. 0 ms: a
250-ms time window immediately after stimulus onset. Please refer to Fig. 1 for the meaning of each abbreviation.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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3.6. Covariates associated with task-related high-gamma amplitudes

As ancillary findings from the mixed model analysis, we also
observed significant effects of certain other covariates on high-
gamma amplitudes. For laterality, the left SFG showed significantly
higher high-gamma amplitude compared to the right, between +

600 ms post-stimulus onset to + 500 ms post-stimulus offset,
and this effect was particularly large during the response period
(maximum t-value: +5.61 noted between + 250 to + 500 ms

post-stimulus offset; mixed model coefficient: +7.60% [95%CI:
+4.94 to + 10.25]; uncorrected p-value: 2.169E-08; DF: 2770.78).

In addition, high-gamma dynamics varied between trials imme-
diately following a successful versus failed trial. Compared to trials
after a successful response, those after a failed response showed
attenuated high-gamma amplitudes in the lateral occipital region,
between + 100 and + 1,100 ms post-stimulus onset (largest nega-
tive t-value: �5.17 noted between + 250 to + 500 ms post-

stimulus offset; mixed model coefficient: �8.21% [95%CI: �11.31
17
to � 5.10]; uncorrected p-value: 2.507E-07; DF: 2172.09; Supple-
mentary Fig. 1). In contrast, trials after a failed response were
associated with persistent augmentation of high-gamma ampli-
tude in the STG, supramarginal, pMFG, precentral, postcentral,
and fusiform regions just after stimulus onset (largest t-value in
the fusiform: +8.02 noted between + 50 to + 300 ms post-

stimulus offset; mixed model coefficient: 7.17% [95%CI: 5.42 to
8.93]; uncorrected p-value: 1.408E-15; DF: 3586.31; Supplemen-
tary Fig. 1). For interested readers, Supplementary Video 5 pre-
sents the spatiotemporal dynamics of prior failed response-
related high-gamma modulations and functional connectivity.
3.7. Relationship between high-gamma modulations and response
accuracy

The logistic mixed model analysis revealed that increased high-
gamma amplitude in the pIFG region during two 250-ms periods
between stimulus onset and 500-ms post-stimulus onset (Fig. 5)



Fig. 5. Relationship between high-gamma modulations and response accuracy. In this matrix of 16 regions of interest (ROIs) and ten 250-ms time windows, the mixed model
t-values are shown in the cells, representing the strength of the association between high-gamma amplitude and the likelihood of successful trials. Red cells indicate a
significant positive association between high-gamma amplitude and achieving a successful trial. Blue cells indicate a significant negative association, where reduced high-
gamma amplitude was associated with a higher chance of successful trials. Please refer to Fig. 1 for the meaning of each abbreviation.(For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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was associated with a higher chance of the trial being successful,
independently of the six covariates. The maximum t-value
was + 4.52, observed during the 250-ms period between + 250
to + 500 ms post-stimulus onset; the odds ratio was + 1.01/%
(95%CI: +1.005 to + 1.013; uncorrected p-value: 7.180E-06), and
the DF was 1880.00.

Additionally, reduced high-gamma amplitude in multiple ROIs
in the frontal, temporal, and parietal lobes was independently
associated with a higher chance of the trial being successful
(Fig. 5). For instance, a decrease in high-gamma amplitude in the
aMFG region between + 500 ms and + 750 ms post-stimulus onset
was associated with successful trials, with a t-value of � 4.31;
thereby, the odds ratio was 0.994/% (95%CI: 0.99 to 1.00; uncor-
rected p-value: 1.71E-05), and a DF of 2412.00.

The logistic mixed model analysis indicated that an increased
memory load was independently associated with a lower chance
of a successful trial (Bootstrap mean t-value: –22.95; 95%CI: –
23.62 to –22.33; p-value: 9.990E-04). A separate univariate logistic
regression analysis revealed that each additional tile decreased the
odds of a successful trial by a Bootstrap mean of 0.47 across ten
patients (95%CI: 0.35 to 0.59; p-value: 0.002).
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3.8. Additive value of high-gamma amplitude in predicting upcoming
responses

Based on the machine learning bagged tree ensemble model
incorporating a total of 70 variables, the top three predictor variables
contributing to accurate prediction of upcoming responses were: [1]
’number of tiles (i.e., memory load)’ (Bootstrap mean relative contri-
bution: 0.00288; 95%CI: 0.00285 to 0.00290; p-value: 0.001), [2]
’pIFG high-gamma amplitude between + 250 and + 500 ms post-
stimulus onset’ (Bootstrap mean relative contribution: 0.000286;
95%CI: 0.000273 to 0.000299; p-value: 0.001), and [3] ’SFG high-
gamma amplitude between stimulus onset and 250 ms post-
stimulus onset’ (Bootstrap mean relative contribution: 0.000249;
95%CI: 0.000236 to 0.000261; p-value: 0.001). It is important to note
that the predictive performance of the ’pIFG high-gamma amplitude
between + 250 and + 500 ms post-stimulus onset’ was significant as
evidenced by both logisticmixedmodel andmachine learning-based
analyses (see Fig. 5). In contrast, the ’SFG high-gamma amplitude
between stimulus onset and 250 ms post-stimulus onset’ did not
demonstrate significant predictive performance in the logistic mixed
model analysis, as shown in Fig. 5.
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The base logistic regression model solely incorporating ’the
number of tiles in a given trial’ predicted a successful trial with
an area under the curve (AUC) of 0.72 (95%CI: 0.67 to 0.77). The full
logistic regression model, which also incorporated ’pIFG high-
gamma amplitude between + 250 and + 500 ms post-stimulus
onset’ predicted a successful trial with an AUC of 0.76 (95%CI:
0.70 to 0.82). The AUC was improved by 5.74% (95% CI: 3.61 to
7.87) when pIFG high-gamma amplitude was added as a predictor
Fig. 6. Task-related high-gamma and alpha amplitude modulations. The snapshots s
comparison to the baseline mean. (A) Stimulus onset. (B) 250 ms after stimulus onset. The
region. (C) 1000 ms after stimulus onset. (D) Response onset (i.e., the onset of the firs
precentral and postcentral gyri. For a comprehensive overview of the iEEG high-gamma
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variable, compared to the base logistic regression model without
this variable.

3.9. Relationship between task-related high-gamma and other
frequency band amplitudes

Fig. 6 depicts snapshots from time-resolved animations show-
ing task-related high-gamma and alpha amplitude modulations.
howcase the percent change of high-gamma70-110 Hz and alpha8-12 Hz amplitudes in
arrowhead indicates increased high-gamma amplitude in the right medial occipital
t tap response). The arrow indicates increased high-gamma amplitude in the left
and alpha amplitude changes, please refer to Supplementary Video 2.
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This visualization reveals increases in high-gamma amplitude,
along with reductions in alpha amplitude in the medial occipital
region at 250 ms post-stimulus onset (Fig. 6B), as well as in the left
precentral and postcentral gyri at response onset (Fig. 6D). How-
ever, after stimulus onset, we observed a persistent and wide-
spread increase in alpha amplitudes, whereas high-gamma
amplitudes appeared to be mildly reduced compared to baseline.
In Supplementary Figs. 2 - 17, we present the plots showing the
temporal changes of task-related high-gamma and other frequency
band amplitudes at given ROIs.

Fig. 7 summarizes the correlations between task-related high-
gamma and other frequency band amplitudes within specific ROIs.
There was an inverse correlation between high-gamma amplitude
and each of the low-frequency band amplitudes: delta, theta,
alpha, and sigma activities, in a region-specific manner (detailed
statistical results in Supplementary Table 2). The degree of inverse
correlation between high-gamma and each of the low-frequency
band amplitudes was generally modest. The grand-mean Spear-
man’s rho across the 16 ROIs was � 0.08 (95%CI: �0.11
to � 0.05; p-value: 0.004) for delta; �0.08 (95% CI: �0.12
to � 0.05; p-value: 0.001) for theta; �0.08 (95% CI: �0.10
to � 0.06; p-value: 0.001) for alpha; �0.05 (95%CI: �0.09
to � 0.01; p-value: 0.018) for sigma amplitude. Conversely, high-
gamma amplitudes were positively correlated with beta, low-
gamma, and very high-gamma amplitudes; the grand-mean Spear-
man’s rho across the 16 ROIs was 0.10 (95%CI: 0.03 to 0.16; p-
value: 0.019) for beta; 0.29 (95%CI: 0.23 to 0.36; p-value: 0.001)
for low-gamma; 0.45 (95%CI: 0.40 to 0.51; p-value: 0.001) for very
high-gamma amplitude.
Fig. 7. Correlation between task-related high-gamma and other frequency band a
correlation between high-gamma amplitude at 70–110 Hz and one of the following frequ
Theta at 4–8 Hz. (C) Alpha at 8–12 Hz. (D) Sigma at 12–16 Hz. (E) Beta at 16–30 Hz. (F)
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Within the sensorimotor and visual areas, the largest negative
rho values were noted when computing the correlation of high-
gamma with sigma or alpha amplitude. At the precentral, lateral
occipital, and fusiform regions, high-gamma amplitude was most
inversely correlated with sigma amplitude (rho: �0.21, �0.11,
and � 0.11; p-values: 0.001, 0.042, and 0.016, respectively). At
the postcentral gyrus, high-gamma amplitude was most inversely
correlated with alpha amplitude (rho: �0.17; p-value: 0.002).

In contrast, within association cortices, the largest negative rho
values were noted when computing the correlation of high-gamma
with theta or delta amplitude. At the orbitofrontal region, pIFG,
STG, and supramarginal gyrus, high-gamma amplitude was most
inversely correlated with theta amplitude (rho: �0.14, �0.17,
�0.10, and � 0.20; p-values: 0.004, 0.007, 0.015, and 0.001, respec-
tively). At the inferior parietal, inferior temporal, middle-temporal,
and anterior middle-frontal gyri, high-gamma amplitude was most
inversely correlated with delta amplitude (rho: �0.16, �0.14,
�0.10, and � 0.20; p-values: 0.021, 0.007, 0.030 and 0.002).

Given the observed differences in the inverse correlation
between high-gamma amplitudes and low-frequency band ampli-
tudes across various ROIs, we conducted a post-hoc mixed model
analysis. Detailed methods and results are provided in the Supple-
mentary document and Supplementary Fig. 18. We found that
baseline low-frequency rhythm in the sensorimotor and visual
areas, as compared to within the association cortices, was predom-
inantly characterized by relatively higher alpha and sigma ampli-
tudes than theta and delta amplitudes.

Interestingly in the medial temporal region, the mean Spear-
man’s rho between high-gamma and each of the low-frequency
mplitudes. The mean Spearman’s rho is presented, which reflects the degree of
ency band amplitudes within a given region of interest (ROI). (A) Delta at 2–4 Hz. (B)
Low-gamma at 30–50 Hz. (G) Very high-gamma at 130–150 Hz.



R. Ueda, K. Sakakura, T. Mitsuhashi et al. Clinical Neurophysiology 162 (2024) 9–27
band amplitudes did not fall below zero and was relatively higher
than those in the remaining 15 ROIs (Fig. 7). For instance, the mean
Spearman’s rho between high-gamma and alpha amplitudes
was + 0.03 within the medial temporal region, higher than the
grand mean across the remaining 15 ROIs (grand mean rho across
the 15 ROIs: �0.12; 95%CI: �0.14 to � 0.10; p-value: 0.001 on stu-
dentized bootstrap one-sample t-test).
4. Discussion

4.1. Summary

We found that the human brain enhances functional connectiv-
ity between the occipital and medial temporal regions during stim-
ulus presentation to encode visual information under increased
memory load. This is achieved while simultaneously diminishing
functional connectivity across other brain regions. Furthermore,
we found that with increased familiarity with the task through
repeated trials, the pIFG becomes active within the first few hun-
dred milliseconds after stimulus onset, while reducing neural costs
across other extensive brain networks. Activation of the pIFG
appears to be instrumental in improving workingmemory function
because we observed that increased high-gamma amplitude in the
pIFG right after stimulus onset was predictive of successful mem-
ory performance. The current study has broadened our under-
standing of how humans adapt to effectively exert visuospatial
working memory function through the modulation of underlying
cortical networks via white matter tracts, and our movies illustrate
such spatiotemporal dynamics.
4.2. Memory load-dependent functional connectivity enhancement
within 1000 ms post-stimulus onset

Our dynamic tractography movies demonstrated enhancement
of memory load-dependent functional connectivity through the
medial occipital longitudinal tract between the medial occipital
region (a lower-order visual area; Nakai et al., 2019) and the med-
ial temporal region between 350 and 800 ms post-stimulus onset
(Fig. 3). Early memory load-dependent high-gamma augmentation
at the medial occipital region can be attributed to more complex
physical properties derived from a larger number of blue-painted
tiles or a larger matrix size. Increased complexity or size of visual
stimuli may require more saccadic eye movements for successful
encoding, and each saccade is expected to transiently augment
high-gamma activity in the medial occipital region (Uematsu
et al., 2013). Due to the absence of a control task, in which patients
would, for example, randomly tap a pre-instructed number of tiles,
we are unable to determine the proportion of medial occipital
high-gamma augmentation attributable to the physical properties
of visual stimuli.

Subsequently, higher-order visual areas, including the fusiform
and lateral occipital regions, displayed memory load-dependent
high-gamma amplitude enhancement together with the medial
occipital and medial temporal regions between 550 and 950 ms
post-stimulus onset. The functional connectivity enhancements
between the lower-/higher-order visual areas and the medial tem-
poral region may reflect working memory processes, including
visual perception, memory encoding, and maintenance. This notion
is consistent with a scalp EEG study in healthy individuals that
reported successful recall of picture stimuli was associated with
increased gamma50-80 Hz amplitudes and reduced alpha8-12 Hz

amplitudes in the posterior head region between 400 to 1,300-
ms post-stimulus onset (Friese et al., 2013). Another study of visu-
ospatial working memory in healthy participants using scalp EEG
reported that increased number of memory items were associated
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with increased event-related potentials in the occipital region con-
tralateral to the memorized hemifield during a 900-ms delay/-
maintenance period (Vogel and Machizawa, 2004). Lesion-to-
deficit studies indicate that the medial temporal lobe structures
support accurate visuospatial working memory, based on the
observations that patients with bilateral medial temporal lobe
damage had profound impairments and even with 4 second delays,
these patients could not recall visual stimuli (Olson et al., 2006;
Jeneson et al., 2012).

4.3. Memory load-dependent functional connectivity enhancement
around stimulus offset

We found a brief memory load-dependent increase in high-
gamma amplitude in several regions, including the medial tempo-

ral, medial occipital, and pIFG, around the stimulus offset (i.e.,
around 2000 ms post-stimulus onset; Fig. 3). Functional connectiv-
ity enhancement between the medial occipital and pIFG regions
took place through the inferior fronto-occipital fasciculus

between � 100 and 200 ms post-stimulus offset. Interpretation
of this late and brief functional connectivity enhancement is less
straightforward. Some hypothesize that it reflects a mediation of
attentional control of the visual reactivation process to facilitate
optimal retention of memory items. A study of visuospatial mem-
ory in nonhuman primates found that the prefrontal region
showed increased firing rate based on the visually attended loca-
tions, rather than the remembered ones in a task requiring visu-
ospatial working memory function (Lebedev et al., 2004).
Furthermore, previous fMRI studies of healthy individuals have
reported persistent hemodynamic activation in the dorsolateral
prefrontal cortex and the pIFG during a delay/maintenance period
of visual working memory tasks (Curtis and D’Esposito, 2003;
Rissman et al., 2008).

4.4. Persistent memory load-dependent functional connectivity
diminution

We observed memory load-dependent functional connectivity
diminution in extensive white matter networks, including the
arcuate, uncinate, and superior-longitudinal fasciculi between the
temporal, frontal, and parietal lobes, persisting between the stim-
ulus onset and 500 ms post-stimulus offset (Fig. 3). This finding is
consistent with the hypothesis of resource reallocation (Mayer
et al., 2007; Bays et al., 2011), which suggests that as memory load
increases, the brain selectively allocates more attentional and cog-
nitive resources to the relevant regions (i.e., between visual areas
andmedial temporal region) and reduces connectivity with regions
involved in processing irrelevant or distracting information such as
environmental sounds. Furthermore, our study found that reduced
high-gamma amplitudes in the STG, MTG, precentral gyrus, aMFG,
and pMFG (often consisting of a part of the auditory, motor and
language networks; (Nakai et al., 2017; Nakai et al., 2019) were
associated with higher odds of success (Fig. 5).

4.5. Task familiarity-dependent functional connectivity enhancement
involving the posterior inferior frontal gyrus (pIFG)

Our study demonstrated that pIFG high-gamma amplitude was
enhanced as a function of trial number, and an increase of early
pIFG high-gamma activity during stimulus presentation improved
the probability of successful recall. We observed a significant
increase in pIFG high-gamma amplitude between + 400 ms
and + 900 ms post-stimulus onset with an increased trial number
(Fig. 4; Supplementary Video 4). Additionally, task familiarity-
dependent functional connectivity between pIFG and SFG through
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the frontal aslant fasciculus was enhanced between + 800 and
1150 ms post-stimulus onset. Our machine learning-based classifi-
cation model revealed that pIFG high-gamma amplitude
between + 250 to + 500 ms post-stimulus onset had the second lar-
gest relative contribution to successful performance, after the
number of blue tiles. Namely, the memory load had the largest rel-
ative contribution to predict the accuracy of successful recall.
Incorporating this pIFG high-gamma measure significantly
improved the AUC of the memory load-based logistic regression
model in predicting successful trials by 5.74%. Such a small, incre-
mental improvement in memory performance may have a major
effect on humans’ lives over time or in specific contexts, such as
preparing for an exam or a sports match. Our prior iEEG and fMRI
studies of children have shown that pIFG is involved in visual
memory formation (Ofen et al., 2007; Johnson et al., 2018b; Tang
et al., 2018). We hypothesize that early pIFG engagement and func-
tional connectivity enhancement with the SFG through the frontal
aslant fasciculus during the stimulus period may reflect attentional
control or strategic manipulation of memory items for optimizing
visuospatial working memory performance, gained through the
experience of more trials (Phillips and Baddeley, 1971; Schmidt
et al., 2002; Bunge and Wright, 2007; Eimer, 2014). Functional
imaging studies of healthy individuals and invasive neurophysiol-
ogy studies of non-human primates indicate that the pIFG plays a
critical role in selectively attending to relevant visual information
to facilitate the encoding and maintenance of the memory items
(Coull et al., 1996; Curtis and D’Esposito, 2003; Lebedev et al.,
2004; Rissman et al., 2008). Plausible manipulation processes
may also include encoding of memory items as chunks or groups
of simple forms or motor sequences (Bor et al., 2003; Seidler
et al., 2012). Previous fMRI studies of healthy individuals reported
bilateral pIFG activation was elicited in visuospatial working mem-
ory tasks in which participants were required to exert manipula-
tion, such as chunking of painted tiles in matrices rotated
mentally, to judge the identity of two visual stimuli (Mohr et al.,
2006; Suchan et al., 2006). A study of healthy individuals reported
that repetitive transcranial magnetic stimulation of the SFG,
believed to be connected to the pIFG, transiently impaired working
memory manipulation function (Postle et al., 2006).

4.6. Persistent task familiarity-dependent functional connectivity
diminution

We observed a task familiarity-dependent connectivity diminu-
tion in extensive white matter networks, including the arcuate,
uncinate, superior-longitudinal, inferior-longitudinal, and inferior
fronto-occipital fasciculi between the temporal, frontal, parietal,
and occipital lobes. This connectivity diminution persisted during
the analysis period between stimulus onset and 500 ms post-
stimulus offset (Fig. 4). Our observed task familiarity-dependent
connectivity diminution can be attributed to the practice effect
or behavioral priming: characterized by a reduction in overall brain
processing and also known as repetition suppression (Gotts et al.,
2012). Previous iEEG studies have reported task familiarity-
dependent reductions in high-gamma amplitude across extensive
networks during visual naming, reading, or working memory tasks
(McDonald et al., 2010; Merzagora et al., 2014; Vidal et al., 2014;
Korzeniewska et al., 2020). Our results generate the hypothesis
that engagement of the pIFG would result in a reduction of func-
tional connectivity networks irrelevant to visuospatial working
memory. Yet, the current study’s data did not provide definitive
evidence to support this conjecture, because we observed that
the significant decrease in functional connectivity was present
from the onset of the stimulus throughout the entirety of the anal-
ysis period. Consequently, we were unable to establish a chrono-
logical order and definitively determine whether augmentation
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in pIFG’s high-gamma activity precedes this reduction in functional
connectivity across widespread brain regions.

4.7. Correlation between high-gamma and low frequency band
amplitudes

The Spearman’s rho values indicated a modest inverse correla-
tion between high-gamma and multiple low-frequency band
amplitudes within all ROIs, except the medial temporal region
(Fig. 7 and Supplementary Table 2). Given that event-related
high-gamma attenuation indicates cortical deactivation and disen-
gagement (Mukamel et al., 2005; Crone et al., 2006; Nishida et al.,
2008; Ray et al., 2008; Harvey et al., 2013; Kunii et al., 2013; Arya
et al., 2018; Leszczyński et al., 2020; Hill et al., 2021; Sonoda et al.,
2022), the memory load-dependent alpha enhancement, in concert
with high-gamma attenuation, observed in this study likely signi-
fies the transient suppression of networks not essential for the
working memory task (Jensen and Mazaheri, 2010). Consistently
reported findings in both EEG and MEG studies include suppres-
sion of posterior alpha amplitude in the hemisphere contralateral
to presentation of a remembered stimulus (Mazaheri and Jensen,
2008; Sauseng et al., 2009; van Dijk et al., 2010; Reinhart et al.,
2012); such posterior alpha suppression likely reflects underlying
cortical excitations to encode visual stimuli. In turn, non-invasive
EEG studies have reported that increased working memory loads
lead to the enhancement of alpha amplitude in prefrontal and pari-
etal regions (Sauseng et al., 2005; Grimault et al., 2009), which
could reflect transient suppression of the underlying cortices.

The current iEEG study demonstrated that, within the sensori-
motor and visual areas, high-gamma amplitude was most inversely
correlated with amplitude of alpha8-12 Hz or sigma activity12-16 Hz;
in contrast, within the association cortices, high-gamma amplitude
was most inversely correlated with amplitude of theta4-8 Hz or
delta activity2-4 Hz. This observation may help some investigators
who want to predict the timing of high-gamma augmentation in
a biological model of visuospatial working memory based on the
attenuation of low-frequency band activities on scalp EEG or MEG.

Within themedial temporal region, the Spearman’s rho between
high-gamma and any of the aforementioned low-frequency band
amplitudes did not fall below zero, and the rho value was relatively
higher than those in the remaining 15 ROIs. This observation sug-
gests that an augmentation of high-gamma activity related to the
working memory task does not necessarily co-occur with attenua-
tion of low-frequency band activities in themedial temporal region.
In other words, it seems least likely that one could accurately pre-
dict the timing of high-gamma augmentation related to working
memory tasks solely based on the attenuation of low-frequency
band activities in this particular region. A study of adults with focal
epilepsy reported that iEEG activity during episodicmemory forma-
tion differed between the medial temporal and neocortical regions;
successful memorywas tied to reduced iEEG power at 3–8 Hz in the
neocortex and increased power in the medial temporal areas of
both hemispheres (Burke et al., 2013).

4.8. Novelty

To the best of our knowledge, this is the first study to present
time-resolved animations that visualize millisecond-scale neural
modulations at the cortical level and functional connectivity mod-
ulations via direct white matter tracts supporting visuospatial
working memory. The time-resolved animations were created
based on intracranially-recorded high-gamma modulations sam-
pled from 876 nonepileptic sites during a task requiring visuospa-
tial working memory function. We estimated the enhancement of
functional connectivity via the white matter tracts by employing
the concept that cortical regions showing simultaneous high-
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frequency neural responses are likely involved in coordinated
interactions (Singer, 1993; Buonomano and Merzenich, 1998;
Singer, 2018). Our previous iEEG study found that distant cortical
regions showing simultaneous task-related high-gamma augmen-
tation were frequently connected with direct white matter path-
ways on DWI tractography and accompanied by increased
effective connectivity as rated by early neural responses to
single-pulse electrical stimulation (Sonoda et al., 2021). Our recent
iEEG studies provided video atlases demonstrating the rapid
dynamics of white matter functional connectivity modulations
during spontaneous eye movements (Ono et al., 2023), picture
and auditory naming tasks (Kitazawa et al., 2023), based on the sig-
nificant and simultaneous high-gamma augmentation beyond a
chance level.

The novelty of the present study lies in the segregation and
visualization of spatiotemporal dynamics of white matter connec-
tivity modulations that are dependent on ’visuospatial working
memory loads’ and ’task familiarity’. Specifically, we utilized a
mixed model analysis to isolate the unique effects of these factors
on high-gamma amplitudes during a working memory task. We
employed dynamic tractography imaging technique to visualize
biologically plausible direct white matter pathways associated
with transient enhancement and diminution of coordinated neural
interactions. For instance, the medial occipital longitudinal tract
(Beyh et al., 2022) was found to support memory load-dependent
functional connectivity enhancement between the medial occipital
and medial temporal regions from 350 to 800 ms post-stimulus
onset, while the inferior fronto-occipital fasciculus supported the
enhanced connectivity between the medial occipital and pIFG
around stimulus offset (Supplementary Video 3). The frontal
aslant fasciculus was involved in task familiarity-dependent con-
nectivity enhancement between the pIFG and SFG between 700
and 1000 ms post-stimulus onset (Supplementary Video 4). In
contrast, extensive white matter pathways were involved in per-
sistent and extensive diminution of memory load- and task
familiarity-dependent functional connectivity (Supplementary
Videos 3 and 4). We are confident that our video will be a valuable
resource for enhancing understanding of the rapid network
dynamics underlying visuospatial working memory.

Another novelty of our study lies in the game’s adaptive feature
where the working memory load in each trial was defined based on
the memory performance of a given individual. Drawing a parallel
to human experience, as one challenge is met, often the subse-
quent ones grow in complexity. Because of this adaptive feature,
the mean correct response rate effectively ranged around 50%
across all study participants. All patients were thus expected to
make comparable efforts in the task. Since every participant was
given challenging trials and made errors in approximately 50% of
those trials, we were able to assess the effect of failed responses
in immediately prior trials using mixed model analysis. The mixed
model analysis controlling for the memory loads showed that, in
trials following a failed response, high-gamma amplitude was
attenuated in the lateral and medial occipital regions at 200–
450 ms post-stimulus, whereas persistent high-gamma augmenta-
tion was noted in the frontal-parietal-temporal regions (Supple-
mentary Fig. 1). Such spatiotemporal dynamics of high-gamma
modulations related to a prior failed response might be attributed
to the notion that, after failed trials, patients may be avoiding auto-
matic or effortless visual processing and exerting error analysis to
avoid repeating mistakes (Huster et al., 2011; Rae et al., 2014;
Völker et al., 2018; Mitsuhashi et al., 2022).

4.9. Methodological considerations

To the best of our knowledge, no studies have been found that
aim to determine the correlation between individual performance
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in Lumosity Memory Matrix and working memory scales in the
Wechsler Intelligence Scale for Children (WISC), such as digit span,
picture span, letter-number sequencing, and arithmetic. The stim-
uli presented during the aforementioned WISC working memory
tests include numbers, letters, and pictures of objects that can be
named, necessitating linguistic processing for these tasks. An iEEG
study of 17 children with drug-resistant focal epilepsy reported
that resection of sites showing picture naming-related high-
gamma augmentation was associated with a postoperative decline
in working memory subscores on WISC (Arya et al., 2019). Con-
versely, the Memory Matrix employs colored squares as stimuli,
indicating it is designed to specifically measure nonverbal visu-
ospatial working memory function. A study involving 2,471
healthy individuals found a correlation between performances in
a nonverbal visuospatial working memory task, referred to as
Visual Matrix and resembling Lumosity’s Memory Matrix, and
other working memory tasks, such as listening sentence span
(r2 = 0.43) and digit sentence span (r2 = 0.43) (Swanson, 2017). Fur-
thermore, an analysis of 447,665 general users of Lumosity identi-
fied a dose–response relationship between sleep duration and
improved performance in the Memory Matrix, particularly for
sleep durations between 4 to 7 hours (Richards et al., 2017). Clin-
ical data show that Lumosity Memory Matrix may be able to detect
neurocognitive impairments in diseased populations. A study of 31
patients with cirrhosis and 28 with pre-cirrhotic chronic liver dis-
ease demonstrated that the Memory Matrix discriminated patients
with cirrhosis with an area under the curve of 0.77 (Tartaglione
et al., 2014).

It is reasonable to hypothesize that older individuals may
employ a different strategy from younger ones when performing
this working memory task. However, our mixed model analysis
did not have sufficient statistical power to detect the effect of
development on task-related high-gamma amplitudes, given the
participation of only 10 children and substantial variation in the
spatial sampling of iEEG signals. To the point, a recent iEEG study,
which analyzed 8,251 nonepileptic electrode sites across 114
patients ranging from infancy to adulthood, revealed slightly
higher rates of spontaneous high-frequency activity at > 80 Hz in
extra-occipital lobe regions in younger children compared to older
ones (Sakakura et al., 2023); however, the most pronounced devel-
opmental variability in such high-frequency activity occurred dur-
ing infancy, with minimal changes observed from age nine
onwards.

Based on the mixed model analysis, memory load- and task
familiarity-dependent diminution of high-gamma amplitudes
were identified in substantial proportions of ROIs and analysis time
windows. As such, one may wish to consider the risk of Type I error
of high-gamma co-attenuation in a pair of ROIs when examining
significant functional connectivity modulations. The risk of Type I
error was acceptably low in the ROIs where memory load-
dependent high-gamma co-attenuation occurred in three consecu-
tive time windows and where task familiarity-dependent high-
gamma co-attenuation took place in seven consecutive time
windows.

Our dynamic tractography is not designed to estimate the direc-
tion of neural propagation during a working memory task. Incorpo-
rating the results of Granger-type causality analysis might be
beneficial for visualizing the directionality of strengthened connec-
tions (Flinker et al., 2015; Giahi Saravani et al., 2019).

It is infeasible to expect that our analytical approach is free
from false negative detection of genuine connectivity enhance-
ment between ROIs. Accurately delineating and validating short-
range U-fiber streamlines using DWI tractography is challenging
due to a known crossing fiber problem and the absence of an opti-
mal gold standard (Movahedian Attar et al., 2020; Wang et al.,
2012). This study postulated that cortical sites within the same
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gyrus exhibiting memory load-dependent high-gamma enhance-
ment (e.g., the medial occipital gyrus immediately after stimulus
onset) could be connected through local white matter pathways.

While white matter development is suggested to be drastic dur-
ing young childhood and modest during adolescence (Asato et al.,
2010; Baum et al., 2022), it’s important to emphasize that our
study did not aim to identify age-dependent changes in DWI mea-
sures or localize aberrant DWI streamlines in specific patients with
focal epilepsy. Instead, our goal was to characterize iEEG high
gamma-based functional connectivity modulations via major
white matter pathways common to the general population. We
believe that our study patients and healthy individuals shared sim-
ilar white matter streamlines for several reasons. In humans, the
head size reaches 95% of the adult dimensions by the age of 7 years
(Bastir et al., 2006), and the ages of our study patients ranged from
9 to 20 years. Similar to the approach taken by Kitazawa et al.
(2023), we excluded patients with massive brain malformations
affecting the central, lateral, or calcarine sulcus. Furthermore, we
omitted from our analysis any brain regions impacted by epilepti-
form discharges or structural lesions. Our prior iEEG study (Sonoda
et al., 2021) indeed validated a multimodal analysis that combined
iEEG measures from non-epileptic cortices of individual patients
with open-source DWI data from healthy individuals. In this anal-
ysis, we used single-pulse electrical stimulation to measure the
latency of neural responses at remote cortical sites and calculated
the white matter propagation velocity, defined as the length of a
white matter streamline divided by this neural response latency.
We thereby computed this propagation velocity using DWI data
from both individual patients and healthy individuals, finding a
strong correlation (Pearson’s r = 0.8) between propagation veloci-
ties derived from individual and open-source DWI data.

We evaluated the temporal dynamics of high-gamma modula-
tions using the widely applied Desikan atlas-based ROIs (Desikan
et al., 2006; Nakai et al., 2017). Thus, pIFG reported in this study
was a summation of pars opercularis (Brodmann area 44) and pars
triangularis (Brodmann area 45). Technical difficulties associated
with tractography and a limited number of electrode sites for a
given ROI prevented us from reducing the size of ROIs further.

Due to the small sample size, our analysis was limited to intra-
hemispheric connectivity. Likewise, we were unable to determine
the effect of sex on iEEG measures. Sampling limitations are inher-
ent in any iEEG study, as all our intracranial electrodes were placed
strictly for clinical necessity; we did not expand the iEEG spatial
sampling for research purposes (Mercier et al., 2022). Conse-
quently, some ROIs may not have included an ideal number of
samples. We anticipate an increase in the amount of stereoelec-
troencephalography data from deep cortices and thalamic nuclei
in the coming decade (Kerezoudis et al., 2022). Future advance-
ments in tractography sensitivity and larger sample sizes through
collaboration may enable connectivity analysis across smaller cor-
tical/subcortical ROIs with satisfactory statistical power.
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