
Chapter 10
How Can iEEG Be Used to Study
Inter-Individual and Developmental
Differences?

Elizabeth L. Johnson and Robert T. Knight

Abstract Inter-individual differences, including but not limited to those that distin-
guish children from adolescents and younger from older adults, are a hallmark of
human cognition. As described throughout this book, intracranial electroencephalog-
raphy (iEEG) affords unprecedented access to the human brain, permitting insight
into the neurophysiology of human cognition with high spatiotemporal and single-
trial precision. However, iEEG is also limited due to brain coverage that is sparse
within one patient and variable across patients. This limitation poses a fundamental
challenge for the use of iEEG in controlled investigations of inter-individual differ-
ences. In this chapter, we address this challenge and describe best practices for studies
that aim to elucidate inter-individual and developmental differences in the neuro-
physiological mechanisms of human cognition using iEEG. We first briefly discuss
how iEEG data are typically handled by minimizing sources of inter-individual vari-
ability.We then present best practices for the use of iEEG in controlled investigations
of inter-individual differences and describe recent studies that used iEEG to reveal
signatures of memory which differ across patients. We propose that iEEG be consid-
ered a gold standard in studies of inter-individual and developmental differences in
the neurophysiology of human cognition.

10.1 Introduction

No two brains are identical, and inter-individual differences are a defining feature of
the human experience. This chapter focuses on intracranial electroencephalography
(iEEG) as a tool to investigate inter-individual and developmental differences in
human cognition, understanding of which has been hindered by common neurosci-
entific approaches. First, because noninvasive imaging methods offer either spatial
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or temporal precision, reliance on techniques such as functional magnetic reso-
nance imaging (fMRI) and scalp EEG has limited our ability to delineate human
brain activity with both spatial and temporal precision. Second, because noninva-
sive imaging techniques offer relatively low signal-to-noise ratio [1], many studies
have relied on group-level averaging of brain data and treated inter-individual vari-
ability as a source of noise [2–5]. Third, because invasive recording, which offers
high spatiotemporal resolution and signal quality, has been traditionally performed in
non-human animals, resulting data cannot explain factors that distinguish one person
fromanother. This is especially relevant to developmental inquiry, as thematurational
trajectory of the human brain is more protracted and qualitatively distinct from that
of even our closest primate relatives [6–10]. iEEG addresses these hindrances by
providing insight into the neurophysiology of human cognition with high spatiotem-
poral resolution and signal-to-noise ratio enabling single-trial precision [11–14].
With appropriate controls, iEEG studies offer immense potential to advance our
understanding of inter-individual and developmental differences in human cognition.

Figure 10.1 illustrates two datasets in which responses such as behavioral perfor-
mance or measures of brain structure or function differ between two experimental
conditions [2]. In one dataset, most individual data are consistent with group averages
and averaging reveals an omnibus pattern. However, some participants show oppo-
site trends or higher responses that are masked by averaging. In the other dataset,
group averages do not differ between conditions, but the underlying individual data
could be divided into two groups of participants showing opposite trends. Here, aver-
aging may mask a systematic pattern of inter-individual differences which reflects
meaningful variability in the brain. Indeed, inter-individual variability in behaviors
ranging fromsimplemotor actions to complex executive functions havebeen linked to
inter-individual variability in brain structure [2] and function [15, 16]. Neuroimaging
measures provide better predictive power of inter-individual differences in cognitive
and clinical outcomes than behavioral measures alone [16], and they explain rela-
tionships between factors like socioeconomic status and adolescent development [5].
Comprehensive models in human neuroscience must account for the fact that neural
phenotypes and cognitive behaviors vary widely across the population and change
over time within individuals across the lifespan [17].

Due to its unparalleled spatiotemporal and single-trial precision, iEEG investi-
gations add crucial mechanistic insight to models in human neuroscience [11–14,
18]. However, despite the advantages of iEEG, surgical electrode placement is driven
solely by clinical needs. Electrodes sample brain regions that are common sources of
epilepsy, such that some regions tend to be over-sampled and others under-sampled,
resulting in a “corticocentric bias” that pervades iEEG literature [12]. Further, elec-
trodes should not be placed to sample more of the brain than is necessary to identify
a patient’s seizure focus and, in some cases, to characterize regions critical to motor
and language functions to ensure they are spared from surgical resection [19]. Elec-
trode coverage is therefore sparse within one patient and variable from one patient to
another [11], which renders the exact placement of electrodes a potential source of
noise. Individual electrode placement poses a fundamental challenge for the use of
iEEG in investigations of meaningful inter-individual variability in brain function.
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Fig. 10.1 Schematic examples of average and individual data in two experimental conditions.
(a) The group average in condition B is larger than in condition A (left). Most individual data
are consistent with the group averages (right; purple), however, some participants showed opposite
trends (pink) or higher responses (green). Such inter-individual differences aremasked by averaging.
(b) Group averages do not differ between conditions A and B (left). However, the underlying
individual data could be divided into two groups of participants showing opposite trends (right;
orange vs. purple). Adapted from [2]

Here, we address this challenge and describe best practices for studies that aim to
elucidate inter-individual and developmental differences in the neurophysiological
mechanisms of human cognition using iEEG. We focus on aspects of iEEG studies
that researchers can control to achieve high scientific rigor when examining system-
atic, generalizable patterns of inter-individual and developmental differences in the
precise neurophysiology of human cognition.

10.2 Minimize Inter-Individual Variability in Study Design
and Analysis

Most iEEG studies take considerable measures to minimize inter-individual vari-
ability and draw general conclusions about the neurophysiology of human cognition
without considering the person to whom a brain belongs. In one common approach,
patients are selected for a study based on electrode sampling of the same anatomical
region-of-interest (ROI) and as few as 3-5 patients are includedwith results replicated
per patient. This approach is akin to the standard two-sample procedure of non-human
primate neurophysiology, and offers the advantage of replicability [20]. It is quali-
fied by the high signal-to-noise ratio of intracranial data [1], which enables single-
trial precision and single-subject reliability [11–14]. In another common approach,
patients are selected for a study regardless of specific electrode sampling and elec-
trodes from all patients are combined onto a population-template brain for analysis
of all regions sampled. Larger sample sizes permit sampling of larger swaths of the
brain [21]. These approaches are discussed in detail in Chap. 29. However, studies
aiming to identify inter-individual differences cannot adopt approaches which ignore
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the person to whom a brain belongs. For this reason, it is important to minimize inter-
individual variability not related to effects of interest across subjects during study
design and analysis.

At the design stage, experiments may be designed to promote statistical testing
of iEEG effects of interest prior to analysis of inter-individual differences in those
effects. Specifically, researchers should pay close attention to the appropriateness
of the study design to test hypotheses, and ensure that any manipulation (e.g., of
experimental condition) is successful. Such research design and strict theorizing
should be considered a prerequisite to rigorous statistical testing [22]. Resulting data
may then be divided trial-by-trial according to the study design, whether that is a
condition manipulation [23, 24], participant-defined criterion (e.g., correct versus
incorrect behavioral response [25–27]), or some other task-related component (e.g.,
post-stimulus versus pre-stimulus epoch [24, 25]). At the analysis stage, iEEG data
maybe analyzed trial-by-trial at the single-subject level according to the study design.
Although these steps do not directly address the issue of electrode placement, they
capitalize on the high signal quality of intracranial data and isolate iEEG effects of
interest per patient while minimizing other sources of noise that vary from patient
to patient (e.g., hospital testing environment). Applying these steps before analyzing
inter-individual differences maximizes the likelihood that iEEG measures reflect
meaningful factors with unambiguous interpretation of function.

10.3 Define the Inter-Individual Factor(s) of Interest

As described above, factors reflecting the neurophysiology of cognition broadly may
be tested on the single-subject level prior to analyzing inter-individual differences.
These factors should be defined according to the study design [22], be they manip-
ulations of experimental condition, participant-defined criteria, or other task-related
factors. Inter-individual factors of interest, however, need not directly relate to the
study design. Factors to consider include experimental task performance, demo-
graphic factors like age or sex, neuropsychological assessment data, and measures
of brain structure.

Individual measures of task performance including accuracy and response time
(RT) are straightforward to consider because they require no additional data collec-
tion. Here we describe two studies that used iEEG to reveal inter-individual differ-
ences in memory performance and addressed the issue of electrode placement in
distinct statistical approaches. In one study, Sheehan and colleagues related indi-
vidual iEEG effects to associative memory accuracy [26] (Fig. 10.2). iEEG data
were analyzed for sample entropy, a measure of signal complexity posited to reflect
the brain’s ability to flexibly encode and process information, during the encoding
of word pairs that were subsequently remembered. Individual signal complexity was
found to correlate positively with associative memory accuracy across the sample of
43 participants. To address the issue of electrode placement, researchers included
patients regardless of specific electrode sampling and applied spatial smoothing
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around each 1 × 1 cm ROI to minimize noise related to exact sampling across
patients. Although this procedure attenuated the spatial resolution slightly from the
mm to cm scale, it balanced the spatial precision of iEEG with the need to main-
tain statistical power across patients. In another study, Brzezicka and colleagues
related individual iEEG effects to RT in a task that manipulated working memory
load [23]. Data were analyzed for load-related changes in power in three ROIs, and
theta power in the dorsolateral prefrontal cortex (PFC), but not anterior cingulate or
hippocampus, was found to correlate positively with RT across electrodes from 13
patients. To address the issue of electrode placement, researchers included patients
withROI sampling and used linearmixed-effectsmodelingwith electrodes as random
samples. Although this procedure limited the spatial precision to the ROI, it mini-
mized noise related to specific electrode sampling and increased the sample size for
enhanced statistical power.

In addition to task performance, demographic factors such as patient age and sex
are often obtained as part of research without additional data collection, and the
information is easily de-identified [19]. Studies which aim to study inter-individual
differences as they relate to development may consider age as a factor of interest, or
the interaction of age and performance.Ofen, Johnson,Yin, and colleagues pioneered
this approach in the first published studies of memory development using iEEG [13,

a c
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Fig. 10.2 iEEG signal complexity tracks inter-individual variability in associative memory perfor-
mance. (a) Associative memory task in [26]. At study, participants encoded word pairs. At test, they
were presented with single words and prompted to retrieve the other word in the pair. (b) Spatial
distribution of electrode coverage color-coded by the number of participants with sampling of
different regions. (c) Signal complexity, measured by sample entropy during the encoding window
shown in (A), was positively correlated with associative memory performance across participants
(r = 0.51, p = 0.0007). (d) Spatial distribution of correlations across all sampled regions, raw (top)
and cluster-corrected for multiple comparisons at p < 0.05 (bottom). SampEn, sample entropy
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24, 25, 27]. In these studies, researchers employed an established subsequentmemory
task where pediatric patients studied scenes in preparation for a recognition test [13]
(Fig. 10.3A). iEEG data were analyzed per patient based on the participant-defined
criterion of subsequent memory (i.e., scenes that were later remembered or forgotten
at test) and then analyzed for inter-individual differences related to age and overall
accuracy. The first study investigated the latency of PFC responses in 17 patients aged
6–19 years [25] (Fig. 10.3B–C). Response latency was defined as the time of peak
high-frequency broadband activity, a partial proxy for multi-unit neuronal activity
[28–31], and individual latency was quantified in four ROIs. The onset latency of
high-frequency responses in inferior frontal gyrus was found to predict behavioral
RT and explain age-related gains in recognition performance. The second study
investigated alpha oscillations in the primary visual cortex of 24 patients aged 6–
21 years [24] (Fig. 10.3D–E). Decreased alpha activity, which is posited to reflect
increased information processing similar to signal complexity [11, 26, 32], was found
to explain age-related gains in the recognition of visually complex scenes. To address
the issue of electrode placement, both studies included patients with ROI sampling
and used linear mixed-effects modeling with patients as random samples (see also
Chap. 36 for a detailed description of this approach). Although this procedure limited
the spatial precision to theROI, it reduced noise related to specific electrode sampling
across patients.

The third study, published in 2022, investigated patterns of inter-regional connec-
tivity between medial temporal lobe (MTL) and PFC in 21 patients aged 6–21
years [27] (Fig. 10.4). Functional connectivity was assessed separately at slow and
fast theta frequencies using both phase- and amplitude-based measures [33, 34].
Importantly, these analyses were performed using individually defined frequencies
to capture oscillatory phenomena of interest while controlling for inter-individual
differences in these phenomena. Both increased slow theta amplitude correlations
[35] betweenMTL and inferior frontal gyrus and fast theta phase-locking values [36]
between MTL and middle frontal gyrus were found to explain age-related gains in
recognition performance. Patients were again included based on ROI sampling and
inter-individual differences were assessed using linear mixed-effects models with
patients as random samples. Finally, to identify potential underlying brain structures
supporting functional connectivity effects, the researchers incorporated diffusion
tractography data that had been obtained as part of the presurgical workup of 11
patients in the sample. Specifically, they tested whether distinct functional connec-
tivity mechanisms in top-performing adolescents were more likely to reflect matu-
ration of the same white matter tract or distinct tracts. They focused a priori on the
two major white matter tracts connecting MTL and PFC, the cingulum and uncinate.
Bayesian analysis provided an initial test due to limitations of the small sample [37]
and suggested that age-related differences in both functional connectivity mecha-
nisms reflected maturation of the cingulum. The high spatiotemporal precision of
iEEG, combined with measures of brain structure, supported a mechanistic proposal
about how brain maturation supports memory development and addressed major
outstanding questions in theoretical models of memory [13].
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Fig. 10.3 iEEG spectral activities track age-related variability in recognitionmemory performance.
(a) Recognition memory task. At study, participants encoded pictures of scenes and classified
each scene as ‘indoor’ or ‘outdoor’. At test, they were presented with studied scenes inter-mixed
with new scenes and prompted to indicate whether each scene was ‘old’ or ‘new’. (b) Frontal
electrode coverage across participants color-coded by region of interest in [25]. IFG, inferior frontal
gyrus; MFG, middle frontal gyrus; SFG, superior frontal gyrus; PCG, precentral gyrus. (c) The
latency of peak IFG high-frequency broadband activity during encoding was negatively correlated
with recognition memory performance across all participants (left; r = –0.60, p = 0.0004). The
negative relationship between peak high-frequency activity latency and performance explained
superior performance in adolescents (right; p = 0.00004). (d) Occipital electrode coverage across
participants color-coded by participant age in [24]. (e) Occipital alpha power differed by age during
the encoding of high- (≥5 object categories) and low-complexity (≤3 object categories) scenes that
were subsequently recognized (left; FDR-corrected p < 0.05). The negative relationship between
alpha power and age during the encoding of high-complexity scenes explained superior performance
in adolescents (right; p < 0.05).

Developmental iEEG research is a burgeoning field which poses additional chal-
lenges. In studies that consider age and performance as factors, for instance, it is
important to demonstrate whether patients in the sample exhibit the expected pattern
of performance for their age. This may be accomplished by comparing the behav-
ioral data from patients to a larger sample of data on the same task from non-clinical
participants [11]. In the memory development studies described above [24, 25, 27],
researchers related the pattern of performance by age in iEEG patient samples to
larger samples of data from non-clinical participants [13]. Alternatively, researchers
may present normative data from neuropsychological assessments, which may be
obtained as part of routine clinical care. If patients do fall in the range of expectations,
iEEG findings of inter-individual and developmental differences may generalize to
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Fig. 10.4 iEEG functional connectivity tracks age-related variability in recognitionmemoryperfor-
mance and maps to brain structure. (a) Subsequent memory effects in slow theta amplitude corre-
lations (AC) between MTL and inferior frontal gyrus differentiated top-performing adolescents
from both low-performing adolescents and children (left; p = 0.011). AC subsequent memory
effects correlated with individual differences the strength of the cingulum tract (right; r = 0.50,
BF10 = 1.48). (b) Subsequent memory effects in fast theta phase-locking values (PLV) between
MTL andmiddle frontal gyrus differentiated top-performing adolescents from both low-performing
adolescents and children (left; p = 0.0006). PLV subsequent memory effects correlated with indi-
vidual differences the strength of the cingulum tract (right; r = 0.64, BF10 = 4.31). FA, fractional
anisotropy. Adapted from [27]

the population. If they do not, it is a limitation of the study sample and findings
should be interpreted and acknowledged as such.

10.4 Understand (and Increase) the Sample Size

In all studies described above [23–27], analyses of inter-individual differences mini-
mized noise related to specific electrode sampling and maintained statistical power
across patients by reducing spatial precision. This illuminates a tradeoff between
statistical power and spatial precision in group-level analysis of iEEG data. Because
research in clinical samples is inherently constrained by the availability of patients
who fit study criteria, many iEEG studies are based on few patients and examine
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effects in single trials, making the sample size constrained by the number of trials
in an experiment as opposed to number of patients who participated. This approach
capitalizes on the single-trial precision of iEEG data and, although it ignores the
person to whom a brain belongs, it is relevant here as it demonstrates the reliability
of the data in single subjects. The single-subject reliability of iEEG data is especially
advantageous in inter-individual differences analysis because it means few patients
are needed at different levels of a factor, for example, task performance for a given
age. It is therefore feasible to investigate inter-individual differences in fewer partic-
ipants than might be needed to achieve comparable reliability using noninvasive
measures with lower signal quality [1].

Nonetheless, iEEG investigations of inter-individual differences are subject to
the same rules of statistics as any other investigation and the availability of patients
who fit study criteria limits the sample size, limiting statistical power [38]. For
instance, samples of approximately 20 participants achieve 80%power to detect large
effects and are likely to miss smaller effects (i.e., Type II error) [39]. It is likely that
initial iEEG investigations of inter-individual differences [23–27] missed not only
the potential to detect meaningful variability within ROIs due to spatial smoothing,
but also smaller effects due to sample size constraints. This is especially relevant in
developmental iEEG studies examining interactions among multiple factors. Future
iEEG investigations of inter-individual and developmental differences may address
both limitations by increasing sample sizes. Substantially increasing sample sizes
would also permit cross-validation analysis, which is recommended over correla-
tion to demonstrate the generalizability of findings to the population [16, 40]. As
more researchers apply iEEG to examine inter-individual and developmental differ-
ences in human cognition, they may seek to increase sample sizes through multi-site
collaboration and data sharing [13, 41]

10.5 Discussion

Intracranial EEG affords unprecedented access to the human brain, permitting insight
into the neurophysiology of human cognition with high spatiotemporal and single-
trial precision and single-subject reliability. However, because iEEG sampling is
sparse within one patient and variable across patients, the technique poses a funda-
mental challenge in investigations of inter-individual differences. Here, we address
this challenge and describe best practices for studies that aim to elucidate inter-
individual and developmental differences in human cognition using iEEG. We focus
on aspects of iEEG studies that researchers can control to achieve high scientific rigor
when examining systematic, generalizable patterns of inter-individual and devel-
opmental differences. First, researchers should pay close attention to the appro-
priateness of the study design to test hypotheses and ensure that iEEG measures
reflectmeaningful factors with clear interpretation of function before analyzing inter-
individual differences. Second, researchers should define inter-individual factors of
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interest based onwhat is feasible given sensitive, potentially identifiable patient infor-
mation, and ensure that group-level analysis of inter-individual differences controls
for noise in electrode sampling across patients. In developmental studies, researchers
should also demonstrate whether the study sample represents the population based on
non-clinical or normative data and interpret findings accordingly. Third, researchers
should understand the statistical power achieved given the sample size and seek to
increase the sample size when possible. With appropriate controls, we propose that
iEEG be considered a gold standard in studies of inter-individual and developmental
differences in the neurophysiology of human cognition.
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